

7300 7200 7100 7000

LEADING FEATURES

- Up to 24 Mpts/Ch (48 Mpts for 2 Ch)
- Up to 10 GS/s on 4 Channels (20 GS/s for 2 Ch)
- 1, 2, and 3 GHz Bandwidths
- 1 M Ω and 50 Ω Input Paths
- X- Stream Powered Technology
- Touch Screen and Front Panel User Interface
- 10.4 " SVGA Display
- Zoom and Multi-Zoom Display
- Automated Measurements with Histicons
- Connectivity to USB, GPIB and 802.3xx
- Customizable with XDEV
 Developer's Kit Option
- Expandable WaveShape Analysis with XMAP Option
- Jitter Analysis

LeCroy's WavePro 7000 Series brings the ability to conduct next-generation waveform measurements and analysis — not just "viewing" of signals — to 1 GHz, 2 GHz, and 3 GHz bandwidth applications. The WavePro 7300 oscilloscope is the first to offer high-speed integrated 1 M Ω and 50 Ω inputs. Connect any passive or active probe, and the WavePro DSO is ready to measure — conveniently and accurately.

LeCroy has integrated its groundbreaking X-Stream[™] Technology into the WavePro family and combined it with the most intuitive User Interface (UI) available. Such ability gives you greater confidence in the measurements you make. Confidence you can only achieve through fast oversampling of 10 GS/s on all channels, acquisition memory of up to 48 million points to maintain fast sampling—even for long complex signals—and excellent jitter noise floor performance.

The WavePro 7000 series can conduct WaveShape Analysis 10–100 times faster than any other oscilloscope in its class. That makes them excellent tools for next-generation designs, such as datacom/telecom standards development, Gigabit Ethernet, USB 2.0, digital design and debugging, and advanced military designs.

Greater Signal Understanding

The WavePro 7000 series provides multiple options so you can better understand the signals in design. Just press *Zoom* to see expanded detail of the waveform. See graphical views like *Histicons*, *Tracks*, and *Trends* of how a measurement changes throughout the signal. Use 3-D Analog Persistence to get better views of jitter and then measure directly from the trace.

The WavePro 7100, 7200, and 7300 units come with 1 M/channel memory, standard at 1 GHz, the entry-level WavePro 7000 unit provides accessibility to LeCroy's X-Stream Technology at an exceptional price.

Optional application packages focus the ability of the WavePro DSO to specific measurements in optical and electrical mask testing, magnetic and optical disk drive measurements, and clock and timing applications. Whether you're viewing signals or measuring timing and amplitude across multiple channels, the WavePro 7000 series has it all for less.

Specifications

Analog Bandwidth @ 50 Q (-3 dB) Rise Time (Typical) Input Channels Bandwidth Limiters Input Coupling Maximum Input Voltage Channel-Channel Isolation Vertical Resolution Sensitivity DC Gain Accuracy Offset Range Offset Accuracy Horizontal System Timebases Time/Division Range Math & Zoom Traces Clock Accuracy Time Internal Accuracy Sample Rate & Delay Time Accuracy Jitter Noise Floor Trigger & Interpolator Jitter Channel-Channel Deskew Range External Clock Acquisition System Single-Shot Sample Rate/Ch 2 Channel Max Random Interleaved Sampling (RIS) Maximum Trigger Rate Intersegment Time Maximum Acquisition Points/Ch Standard	50 Ω: 2 8 bits, 50 Ω: 2 mV - 50 Ω: 2 mV - (1.5) 1 (1.5) 1 (1.5) 1 (1.5) 1 (1.5) 1 (1.5) 1 (1.5) 1 (1.5) 1 (1.5) 1 (1.5) 2 (1.5) 1 (1.5) 1 (1.5) 2 (1	1 GHz 400 ps 4 25 MHz; 200 MHz Ω; 1 MΩ//11pF typical (using PP005A pro 1 MΩ: AC, DC, GND; 50 Ω: DC 5 Vrms, 1 MΩ: 100 Vmax (peak AC: \leq 5 KHz 250:1 at same V/div setting, 40:1 at 3 GHz ; up to 11 bits with enhanced resolution (1 V/div fully variable; 1 MΩ: 2 mV – 2 V/dii ±1.5% of full scale; ±1% (typical) 50 Ω: ±700 mV @ 2-4.99 mV/div ±1.5 V @ 5-100 mV/div ±1.5 V @ 5-100 mV/div ±2.0 W @ 0.102-2 V/div 5% of full scale + 0.5% of offset value + 2 mmon to 4 input channels; an external ch 20 ps/div – 10 s/div tendent zoom and 4 math/zoom traces st available with XMAP (Master Analysis pac ≤ 10 ppm @ 0–40 °C ≤ 0.06 / SR + (10 ppm * Reading) (rms) ± 10 ppm ≤ 10 s interval 2 ps rms @ 100 mV/div (typical) ≤2.5 ps (typical) ±4.5 ns GHz; 50 Ω impedance; applied at the aux 10 GS/s 20 GS/s for repetitive signals: 20 ps/div – 1 µs	z + DC) z (ERES) iv fully variable mV) lock may be applied at the auxiliary inp tandard; ckage) or XMATH (Advanced Math pack ckage) or XMATH (Advanced Math pack uxiliary input 10 GS/s 20 GS/s	
Input Channels Bandwidth Limiters Input Impedance Input Coupling Maximum Input Voltage Channel-Channel Isolation Vertical Resolution Sensitivity DC Gain Accuracy Offset Range Offset Accuracy Horizontal System Time/Division Range Math & Zoom Traces Clock Accuracy Time Internal Accuracy Sample Rate & Delay Time Accuracy Jitter Noise Floor Trigger & Interpolator Jitter Channel-Channel Deskew Range External Clock Acquisition System Single-Shot Sample Rate/Ch 2 Channel Time Maximum Trigger Rate Intersegment Time Maximum Acquisition Points/Ch Standard	50 Ω: 5 50 Ω: 5 50 Ω: 2 mV - 50 Ω: 2 mV - ±(1.5) 1 nternal timebase con 4 indep 8 math/zoom traces 30 MHz - 1 5 GS/s 10 GS/s 200 0	4 25 MHz; 200 MHz Ω ; 1 MΩ//11pF typical (using PP005A pro 1 MΩ: AC, DC, GND; 50 Ω: DC 5 Vrms, 1 MΩ: 100 Vmax (peak AC: ≤5 KHz 250:1 at same V/div setting, 40:1 at 3 GHz ;up to 11 bits with enhanced resolution (1 V/div fully variable; 1 MΩ: 2 mV – 2 V/div ±1.5% of full scale; ±1% (typical) 50 Ω : ±700 mV @ 2-4.99 mV/div ±1.5 V @ 5-100 mV/div ±1.5 V @ 5-100 mV/div ±1.5 V @ 0.102-1 V/div 1 MΩ: ±700 mV @ 2-4.99 mV/div ±1.5 V @ 0.102-2 V/div 5% of full scale + 0.5% of offset value + 2 mmon to 4 input channels; an external cl 20 ps/div – 10 s/div rendent zoom and 4 math/zoom traces st available with XMAP (Master Analysis pace ≤ 0.06 / SR + (10 ppm * Reading) (rms) ± 10 ppm ≤ 10 s interval 2 ps rms @ 100 mV/div (typical) ≤ 2.5 ps (typical) ±4.5 ns GHz; 50 Ω impedance; applied at the aux 10 GS/s 20 GS/s for repetitive signals:20 ps/div – 1 µs	bbe) z + DC) z (ERES) iv fully variable mV) lock may be applied at the auxiliary inp tandard; ckage) or XMATH (Advanced Math pack ixiliary input 10 GS/s 20 GS/s	ut sage) 10 GS/s
Bandwidth Limiters Input Impedance Input Coupling Maximum Input Voltage Channel-Channel Isolation Vertical Resolution Sensitivity DC Gain Accuracy Offset Accuracy Offset Range Offset Accuracy Horizontal System Time/Division Range Math & Zoom Traces Clock Accuracy Time Internal Accuracy Sample Rate & Delay Time Accuracy Itter Noise Floor Trigger & Interpolator Jitter Channel Channel Deskew Range External Clock Acquisition System Single-Shot Sample Rate/Ch 2 Channel Max Random Interleaved Sampling (RIS) Maximum Trigger Rate Intersegment Time Maximum Acquisition Points/Ch Standard	50 Ω: 2 8 bits, 50 Ω: 2 mV - 50 Ω: 2 mV - (1.5) 1 (1.5) 1 (1.5) 1 (1.5) 1 (1.5) 1 (1.5) 1 (1.5) 1 (1.5) 1 (1.5) 1 (1.5) 2 (1.5) 1 (1.5) 1 (1.5) 2 (1	25 MHz; 200 MHz Ω ; 1 MΩ//11pF typical (using PP005A pro 1 MΩ: AC, DC, GND; 50 Ω: DC 5 Vms, 1 MΩ: 100 Vmax (peak AC: ≤5 KHz 250:1 at same V/div setting, 40:1 at 3 GHz ; up to 11 bits with enhanced resolution 1 V/div fully variable; 1 MΩ: 2 mV - 2 V/div ±1.5% of full scale; ±1% (typical) 50 Ω : ±700 mV @ 2-4.99 mV/div ±1.5 V @ 5-100 mV/div ±1.5 V @ 5-100 mV/div ±0 V @ 0.102-2 V/div 1 MΩ: ±700 mV @ 2-4.99 mV/div ±1.5 V @ 5-100 mV/div ±0 V @ 0.102-2 V/div 5% of full scale + 0.5% of offset value + 2 mmon to 4 input channels; an external ch 20 ps/div - 10 s/div rendent zoom and 4 math/zoom traces st available with XMAP (Master Analysis pac ≤ 10 ppm @ 0-40 °C ≤ 0.06 / SR + (10 ppm * Reading) (rms) ± 10 ppm ≤ 10 s interval 2 ps rms @ 100 mV/div (typical) ≤ 2.5 ps (typical) ±4.5 ns GHz; 50 Ω impedance; applied at the au 10 GS/s 20 GS/s for repetitive signals:20 ps/div - 1 µs	z + DC) z (ERES) iv fully variable mV) lock may be applied at the auxiliary inp tandard; ckage) or XMATH (Advanced Math pack ckage) or XMATH (Advanced Math pack uxiliary input 10 GS/s 20 GS/s	kage) 10 GS/s
Input Impedance Input Coupling Maximum Input Voltage Channel-Channel Isolation Vertical Resolution Sensitivity DC Gain Accuracy Offset Range Offset Accuracy Horizontal System Timebases Time/Division Range Math & Zoom Traces Clock Accuracy Time Internal Accuracy Sample Rate & Delay Time Accuracy Jitter Noise Floor Trigger & Interpolator Jitter Channel Channel Deskew Range External Clock Acquisition System Single-Shot Sample Rate/Ch 2 Channel Max Random Interleaved Sampling (RIS) Maximum Trigger Rate Intersegment Time Maximum Acquisition Points/Ch Standard	50 Ω: 2 8 bits, 50 Ω: 2 mV - 50 Ω: 2 mV - (1.5) 1 (1.5) 1 (1.5) 1 (1.5) 1 (1.5) 1 (1.5) 1 (1.5) 1 (1.5) 1 (1.5) 1 (1.5) 2 (1.5) 1 (1.5) 1 (1.5) 2 (1	Ω: 1 MΩ//11pF typical (using PP005A pro 1 MΩ: AC, DC, GND; 50 Ω: DC 5 Vrms, 1 MΩ: 100 Vmax (peak AC: ≤5 KHz 250:1 at same V/div setting, 40:1 at 3 GHz ; up to 11 bits with enhanced resolution (1 V/div fully variable; 1 MΩ: 2 mV – 2 V/div ±1.5% of full scale; ±1% (typical) 50 Ω: ±700 mV @ 2-4.99 mV/div ±1.5 V @ 5-100 mV/div ±1.5 V @ 5-100 mV/div ±20 V @ 0.102-2 V/div 5% of full scale + 0.5% of offset value + 2 mmon to 4 input channels; an external ch 20 ps/div – 10 s/div tendent zoom and 4 math/zoom traces st available with XMAP (Master Analysis pac ≤ 10 ppm @ 0–40 °C ≤ 0.06 / SR + (10 ppm * Reading) (rms) ±1 0 ppm ≤ 10 s interval 2 ps rms @ 100 mV/div (typical) ≤ 2.5 ps (typical) ±4.5 ns GHz; 50 Ω impedance; applied at the au 10 GS/s 20 GS/s for repetitive signals: 20 ps/div – 1 μs	z + DC) z (ERES) iv fully variable mV) lock may be applied at the auxiliary inp tandard; ckage) or XMATH (Advanced Math pack ckage) or XMATH (Advanced Math pack uxiliary input 10 GS/s 20 GS/s	kage) 10 GS/s
Input Coupling Maximum Input Voltage Channel-Channel Isolation Vertical Resolution Sensitivity DC Gain Accuracy Offset Range Offset Accuracy Horizontal System Timebases Time/Division Range Math & Zoom Traces Clock Accuracy Time Internal Accuracy Sample Rate & Delay Time Accuracy Jitter Noise Floor Trigger & Interpolator Jitter Channel-Channel Deskew Range External Clock Acquisition System Single-Shot Sample Rate/Ch 2 Channel Max Random Interleaved Sampling (RIS) Maximum Trigger Rate Intersegment Time Maximum Acquisition Points/Ch Standard	50 Ω: 2 8 bits, 50 Ω: 2 mV - 50 Ω: 2 mV - (1.5) 1 (1.5) 1 (1.5) 1 (1.5) 1 (1.5) 1 (1.5) 1 (1.5) 1 (1.5) 1 (1.5) 1 (1.5) 2 (1.5) 1 (1.5) 1 (1.5) 2 (1	1 MΩ: AC, DC, GND; 50 Ω: DC 5 Vrms, 1 MΩ: 100 Vmax (peak AC: \leq 5 KHz 250:1 at same V/div setting, 40:1 at 3 GHz ; up to 11 bits with enhanced resolution (1 V/div fully variable; 1 MΩ: 2 mV – 2 V/div ±1.5% of full scale; ±1% (typical) 50 Ω: ±700 mV @ 2-4.99 mV/div ±1.5 V @ 5-100 mV/div ±1.5 V @ 5-100 mV/div ±20 V @ 0.102-2 V/div 5% of full scale + 0.5% of offset value + 2 mmon to 4 input channels; an external ch 20 ps/div – 10 s/div tendent zoom and 4 math/zoom traces st available with XMAP (Master Analysis pac \leq 10 ppm @ 0–40 °C \leq 0.06 / SR + (10 ppm * Reading) (rms) ±10 ppm \leq 10 s interval 2 ps rms @ 100 mV/div (typical) \leq 2.5 ps (typical) ±4.5 ns GHz; 50 Ω impedance; applied at the aus 10 GS/s 20 GS/s for repetitive signals: 20 ps/div – 1 µs	z + DC) z (ERES) iv fully variable mV) lock may be applied at the auxiliary inp tandard; ckage) or XMATH (Advanced Math pack ckage) or XMATH (Advanced Math pack uxiliary input 10 GS/s 20 GS/s	kage) 10 GS/s
Maximum Input Voltage Channel-Channel Isolation Vertical Resolution Sensitivity DC Gain Accuracy Offset Range Offset Range Offset Accuracy Horizontal System Timebases Time/Division Range Math & Zoom Traces Clock Accuracy Time Internal Accuracy Sample Rate & Delay Time Accuracy Jitter Noise Floor Trigger & Interpolator Jitter Channel-Channel Deskew Range External Clock Acquisition System Single-Shot Sample Rate/Ch 2 Channel Max Random Interleaved Sampling (RIS) Maximum Trigger Rate Intersegment Time Maximum Acquisition Points/Ch Standard	8 bits, 50 Ω: 2 mV 	5 Vrms, 1 M Ω : 100 Vmax (peak AC: \leq 5 KHz 250:1 at same V/div setting, 40:1 at 3 GHz ; up to 11 bits with enhanced resolution (1 V/div fully variable; 1 M Ω : 2 mV – 2 V/div \pm 1.5% of full scale; \pm 1% (typical) 50 Ω : \pm 700 mV @ 2-4.99 mV/div \pm 1.5 V @ 5-100 mV/div \pm 1.0 V @ .102-1 V/div 1 M Ω : \pm 700 mV @ 2-4.99 mV/div \pm 1.5 V @ 5-100 mV/div \pm 20 V @ 0.102-2 V/div 5% of full scale + 0.5% of offset value + 2 mmon to 4 input channels; an external ch 20 ps/div – 10 s/div sendent zoom and 4 math/zoom traces st available with XMAP (Master Analysis pac \leq 10 ppm @ 0–40 °C \leq 0.06 / SR + (10 ppm * Reading) (rms) \pm 10 ppm \leq 10 s interval 2 ps rms @ 100 mV/div (typical) \leq 2.5 ps (typical) \pm 4.5 ns GHz; 50 Ω impedance; applied at the aux 10 GS/s 20 GS/s	z (ERES) iv fully variable mV) lock may be applied at the auxiliary inp tandard; ckage) or XMATH (Advanced Math pack kiliary input 10 GS/s 20 GS/s	kage) 10 GS/s
Channel-Channel Isolation Vertical Resolution Sensitivity DC Gain Accuracy Offset Range Offset Accuracy Horizontal System Timebases Time/Division Range Math & Zoom Traces Clock Accuracy Time Internal Accuracy Sample Rate & Delay Time Accuracy Jitter Noise Floor Trigger & Interpolator Jitter Channel-Channel Deskew Range External Clock Acquisition System Single-Shot Sample Rate/Ch 2 Channel Max Random Interleaved Sampling (RIS) Maximum Trigger Rate Intersegment Time Maximum Acquisition Points/Ch Standard	8 bits, 50 Ω: 2 mV 	250:1 at same V/div setting, 40:1 at 3 GHz ;; up to 11 bits with enhanced resolution (1 V/div fully variable; 1 M Ω : 2 mV – 2 V/div ±1.5% of full scale; ±1% (typical) 50 Ω : ±700 mV @ 2-4.99 mV/div ±1.5 V @ 5-100 mV/div ±1.5 V @ 5-100 mV/div ±1.5 V @ 5-100 mV/div ±2.0 V @ 0.102-2 V/div 5% of full scale + 0.5% of offset value + 2 mmon to 4 input channels; an external ch 20 ps/div – 10 s/div bendent zoom and 4 math/zoom traces st available with XMAP (Master Analysis pact ≤ 10 ppm @ 0–40 °C ≤ 0.06 / SR + (10 ppm * Reading) (rms) ±10 ppm ≤ 10 s interval 2 ps rms @ 100 mV/div (typical) ≤ 2.5 ps (typical) ±4.5 ns 1 GHz; 50 Ω impedance; applied at the aux 10 GS/s 20 GS/s for repetitive signals:20 ps/div – 1 µ:	z (ERES) iv fully variable mV) lock may be applied at the auxiliary inp tandard; ckage) or XMATH (Advanced Math pack kiliary input 10 GS/s 20 GS/s	kage) 10 GS/s
Vertical Resolution Sensitivity DC Gain Accuracy Offset Range Offset Range Horizontal System Timebases Time/Division Range Math & Zoom Traces Clock Accuracy Time Internal Accuracy Sample Rate & Delay Time Accuracy Jitter Noise Floor Trigger & Interpolator Jitter Channel-Channel Deskew Range External Clock Acquisition System Single-Shot Sample Rate/Ch 2 Channel Max Random Interleaved Sampling (RIS) Maximum Trigger Rate Intersegment Time Maximum Acquisition Points/Ch Standard	8 bits, 50 Ω: 2 mV 	; up to 11 bits with enhanced resolution (1 V/div fully variable; 1 M Ω : 2 mV – 2 V/div ±1.5% of full scale; ±1% (typical) 50 Ω : ±700 mV @ 2-4.99 mV/div ±1.5 V @ 5-100 mV/div ±10 V @ .102-1 V/div 1 M Ω : ±700 mV @ 2-4.99 mV/div ±1.5 V @ 5-100 mV/div ±20 V @ 0.102-2 V/div 5% of full scale + 0.5% of offset value + 2 mmon to 4 input channels; an external cl 20 ps/div – 10 s/div bendent zoom and 4 math/zoom traces st available with XMAP (Master Analysis pace ≤ 10 ppm @ 0–40 °C ≤ 0.06 / SR + (10 ppm * Reading) (rms) ±10 ppm \ll 10 s interval 2 ps rms @ 100 mV/div (typical) ≤ 2.5 ps (typical) ±4.5 ns 10 GS/s 20 GS/s GS/s for repetitive signals:20 ps/div – 1 µ:	(ERES) iv fully variable mV) lock may be applied at the auxiliary inp tandard; ckage) or XMATH (Advanced Math pack kiliary input 10 GS/s 20 GS/s	kage) 10 GS/s
Sensitivity DC Gain Accuracy Offset Range Offset Range Horizontal System Time/Division Range Math & Zoom Traces Clock Accuracy Time Internal Accuracy Sample Rate & Delay Time Accuracy Jitter Noise Floor Trigger & Interpolator Jitter Channel-Channel Deskew Range External Clock Acquisition System Single-Shot Sample Rate/Ch 2 Channel Max Random Interleaved Sampling (RIS) Maximum Trigger Rate Intersegment Time Maximum Acquisition Points/Ch Standard	50 Ω: 2 mV - ±(1.5 Internal timebase con 4 indep 8 math/zoom traces 30 MHz - 1 5 GS/s 10 GS/s 200 0	1 V/div fully variable; 1 M Ω : 2 mV - 2 V/div ±1.5% of full scale; ±1% (typical) 50 Ω : ±700 mV @ 2-4.99 mV/div ±1.5 V @ 5-100 mV/div ±1.0 V @ 1.02-1 V/div 1 M Ω : ±700 mV @ 2-4.99 mV/div ±1.5 V @ 5-100 mV/div ±1.5 V @ 5-100 mV/div ±20 V @ 0.102-2 V/div 5% of full scale + 0.5% of offset value + 2 mmon to 4 input channels; an external cl 20 ps/div - 10 s/div tendent zoom and 4 math/zoom traces st available with XMAP (Master Analysis pact ≤ 10 ppm @ 0-40 °C ≤ 0.06 / SR + (10 ppm * Reading) (rms) ±10 ppm ≤ 10 s interval 2 ps rms @ 100 mV/div (typical) ≤ 2.5 ps (typical) ±4.5 ns GHz; 50 Ω impedance; applied at the aux 10 GS/s 20 GS/s GS/s for repetitive signals:20 ps/div - 1 µ:	iv fully variable mV) lock may be applied at the auxiliary inp tandard; ckage) or XMATH (Advanced Math pack kiliary input 10 GS/s 20 GS/s	kage) 10 GS/s
DC Gain Accuracy Offset Range Offset Range Morizontal System Timebases Time/Division Range Math & Zoom Traces Clock Accuracy Time Internal Accuracy Sample Rate & Delay Time Accuracy Jitter Noise Floor Trigger & Interpolator Jitter Channel-Channel Deskew Range External Clock Acquisition System Single-Shot Sample Rate/Ch 2 Channel Max Random Interleaved Sampling (RIS) Maximum Trigger Rate Intersegment Time Maximum Acquisition Points/Ch Standard	±(1.5 Internal timebase con 4 indep 8 math/zoom traces 30 MHz – 1 5 GS/s 10 GS/s 200 0	±1.5% of full scale; ±1% (typical) 50 Ω: ±700 mV @ 2-4.99 mV/div ±1.5 V @ 5-100 mV/div ±1.5 V @ 1.02-1 V/div 1 MΩ: ±700 mV @ 2-4.99 mV/div ±1.5 V @ 1.02-2 V/div ±2.0 V @ 0.102-2 V/div ±2.0 V @ 0.102-2 V/div 5% of full scale + 0.5% of offset value + 2 mmon to 4 input channels; an external cl 20 ps/div - 10 s/div rendent zoom and 4 math/zoom traces st available with XMAP (Master Analysis pac ≤ 10 ppm @ 0-40 °C ≤ 0.06 / SR + (10 ppm * Reading) (rms) ± 10 ppm ≤ 10 s interval 2 ps rms @ 100 mV/div (typical) ±2.5 ps (typical) ±4.5 ns GHz; 50 Ω impedance; applied at the aux 10 GS/s 20 GS/s GS/s for repetitive signals:20 ps/div - 1 µ:	mV) lock may be applied at the auxiliary inp tandard; ckage) or XMATH (Advanced Math pack wiliary input <u>10 GS/s</u> 20 GS/s	kage) 10 GS/s
Offset Range Offset Accuracy Horizontal System Timebases Time/Division Range Math & Zoom Traces Clock Accuracy Time Internal Accuracy Sample Rate & Delay Time Accuracy Jitter Noise Floor Trigger & Interpolator Jitter Channel-Channel Deskew Range External Clock Acquisition System Single-Shot Sample Rate/Ch 2 Channel Max Random Interleaved Sampling (RIS) Maximum Trigger Rate Intersegment Time Maximum Acquisition Points/Ch Standard	Internal timebase con 4 indep 8 math/zoom traces 30 MHz – 1 5 GS/s 10 GS/s 200 0	50 Ω: ±700 mV @ 2-4.99 mV/div ±1.5 V @ 5-100 mV/div ±1.5 V @ 5-100 mV/div ±1.5 V @ 1.02-1 V/div ±1.5 V @ 5-100 mV/div ±1.5 V @ 5-100 mV/div ±20 V @ 0.102-2 V/div 5% of full scale + 0.5% of offset value + 2 mmon to 4 input channels; an external ch 20 ps/div - 10 s/div rendent zoom and 4 math/zoom traces st available with XMAP (Master Analysis pac ≤ 10 ppm @ 0-40 °C $\leq 0.06 / SR + (10 ppm * Reading) (rms)$ ± 10 ppm ≤ 10 s interval 2 ps rms @ 100 mV/div (typical) ≤ 2.5 ps (typical) ± 4.5 ns GHz; 50 Ω impedance; applied at the aus 10 GS/s 20 GS/s for repetitive signals: 20 ps/div - 1 µs	lock may be applied at the auxiliary inp tandard; ckage) or XMATH (Advanced Math pack ixiliary input 10 GS/s 20 GS/s	kage) 10 GS/s
Offset Accuracy Horizontal System Timebases Time/Division Range Math & Zoom Traces Clock Accuracy Time Internal Accuracy Sample Rate & Delay Time Accuracy Jitter Noise Floor Trigger & Interpolator Jitter Channel-Channel Deskew Range External Clock Acquisition System Single-Shot Sample Rate/Ch 2 Channel Max Random Interleaved Sampling (RIS) Maximum Trigger Rate Intersegment Time Maximum Acquisition Points/Ch Standard	Internal timebase con 4 indep 8 math/zoom traces 30 MHz – 1 5 GS/s 10 GS/s 200 0	$\pm 1.5 \lor @ 5-100 mV/div$ $\pm 10 \lor @ .102-1 V/div$ 1 MΩ: $\pm 700 mV @ 2-4.99 mV/div$ $\pm 1.5 \lor @ 5-100 mV/div$ $\pm 20 \lor @ 0.102-2 V/div$ 5% of full scale + 0.5% of offset value + 2 mmon to 4 input channels; an external ch 20 ps/div - 10 s/div endent zoom and 4 math/zoom traces st available with XMAP (Master Analysis pac $\leq 10 ppm @ 0-40 °C$ $\leq 0.06 / SR + (10 ppm * Reading) (rms)$ $\pm 10 ppm @ 0-40 °C$ $\leq 0.06 / SR + (10 ppm * Reading) (rms)$ $\pm 10 ppm \leq 10 s interval2 ps rms @ 100 mV/div (typical)\leq 2.5 ps (typical)\pm 4.5 nsGHz; 50 \Omega impedance; applied at the aux10 GS/s20 GS/sGS/s for repetitive signals: 20 ps/div - 1 µs$	lock may be applied at the auxiliary inp tandard; ckage) or XMATH (Advanced Math pack ixiliary input 10 GS/s 20 GS/s	kage) 10 GS/s
Horizontal System Time/Division Range Math & Zoom Traces Clock Accuracy Time Internal Accuracy Sample Rate & Delay Time Accuracy Jitter Noise Floor Trigger & Interpolator Jitter Channel-Channel Deskew Range External Clock Acquisition System Single-Shot Sample Rate/Ch 2 Channel Max Random Interleaved Sampling (RIS) Maximum Trigger Rate Intersegment Time Maximum Acquisition Points/Ch Standard	Internal timebase con 4 indep 8 math/zoom traces 30 MHz – 1 5 GS/s 10 GS/s 200 0	$\pm 1.5 \lor @ 5-100 mV/div \pm 20 \lor @ 0.102-2 V/div 5% of full scale + 0.5% of offset value + 2 mmon to 4 input channels; an external ch 20 ps/div - 10 s/div rendent zoom and 4 math/zoom traces st available with XMAP (Master Analysis pac \leq 10 \text{ ppm } @ 0-40 \degree C\leq 0.06 / \text{SR} + (10 \text{ ppm } * \text{Reading}) (rms)\pm 10 \text{ ppm } \leq 10 \text{ s interval}2 ps rms @ 100 mV/div (typical)\leq 2.5 \text{ ps (typical)}\pm 4.5 \text{ ns}GHz; 50 \Omega impedance; applied at the aux10 GS/s20 GS/sGS/s for repetitive signals: 20 ps/div - 1 µs$	lock may be applied at the auxiliary inp tandard; ckage) or XMATH (Advanced Math pack ixiliary input 10 GS/s 20 GS/s	kage) 10 GS/s
Horizontal System Time/Division Range Math & Zoom Traces Clock Accuracy Time Internal Accuracy Sample Rate & Delay Time Accuracy Jitter Noise Floor Trigger & Interpolator Jitter Channel-Channel Deskew Range External Clock Acquisition System Single-Shot Sample Rate/Ch 2 Channel Max Random Interleaved Sampling (RIS) Maximum Trigger Rate Intersegment Time Maximum Acquisition Points/Ch Standard	Internal timebase con 4 indep 8 math/zoom traces 30 MHz – 1 5 GS/s 10 GS/s 200 0	$\pm 20 V @ 0.102-2 V/div$ 5% of full scale + 0.5% of offset value + 2 mmon to 4 input channels; an external cli 20 ps/div - 10 s/div rendent zoom and 4 math/zoom traces st available with XMAP (Master Analysis pac ≤ 10 ppm @ 0-40 °C ≤ 0.06 / SR + (10 ppm * Reading) (rms) ± 10 ppm ≤ 10 s interval 2 ps rms @ 100 mV/div (typical) ≤ 2.5 ps (typical) ±4.5 ns I GHz; 50 Ω impedance; applied at the aux 10 GS/s 20 GS/s GS/s for repetitive signals: 20 ps/div - 1 µs	lock may be applied at the auxiliary inp tandard; ckage) or XMATH (Advanced Math pack ixiliary input 10 GS/s 20 GS/s	kage) 10 GS/s
Horizontal System Time/Division Range Math & Zoom Traces Clock Accuracy Time Internal Accuracy Sample Rate & Delay Time Accuracy Jitter Noise Floor Trigger & Interpolator Jitter Channel-Channel Deskew Range External Clock Acquisition System Single-Shot Sample Rate/Ch 2 Channel Max Random Interleaved Sampling (RIS) Maximum Trigger Rate Intersegment Time Maximum Acquisition Points/Ch Standard	Internal timebase con 4 indep 8 math/zoom traces 30 MHz – 1 5 GS/s 10 GS/s 200 0	5% of full scale + 0.5% of offset value + 2 mmon to 4 input channels; an external ch 20 ps/div – 10 s/div bendent zoom and 4 math/zoom traces st available with XMAP (Master Analysis pace \leq 10 ppm @ 0–40°C \leq 0.06 / SR + (10 ppm * Reading) (rms) \pm 10 ppm \leq 10 s interval 2 ps rms @ 100 mV/div (typical) \leq 2.5 ps (typical) \pm 4.5 ns 1 GHz; 50 Ω impedance; applied at the aux 10 GS/s 20 GS/s GS/s for repetitive signals: 20 ps/div – 1 µs	lock may be applied at the auxiliary inp tandard; ckage) or XMATH (Advanced Math pack ixiliary input 10 GS/s 20 GS/s	kage) 10 GS/s
Horizontal System Time/Division Range Math & Zoom Traces Clock Accuracy Time Internal Accuracy Sample Rate & Delay Time Accuracy Jitter Noise Floor Trigger & Interpolator Jitter Channel-Channel Deskew Range External Clock Acquisition System Single-Shot Sample Rate/Ch 2 Channel Max Random Interleaved Sampling (RIS) Maximum Trigger Rate Intersegment Time Maximum Acquisition Points/Ch Standard	Internal timebase con 4 indep 8 math/zoom traces 30 MHz – 1 5 GS/s 10 GS/s 200 0	mmon to 4 input channels; an external cl 20 ps/div – 10 s/div bendent zoom and 4 math/zoom traces st available with XMAP (Master Analysis pace ≤ 10 ppm @ 0–40 °C ≤ 0.06 / SR + (10 ppm * Reading) (rms) ± 10 ppm ≤ 10 s interval 2 ps rms @ 100 mV/div (typical) ≤ 2.5 ps (typical) ± 4.5 ns GHz; 50 Ω impedance; applied at the aux 10 GS/s 20 GS/s GS/s for repetitive signals: 20 ps/div – 1 µs	lock may be applied at the auxiliary inp tandard; ckage) or XMATH (Advanced Math pack ixiliary input 10 GS/s 20 GS/s	kage) 10 GS/s
Timebases Time/Division Range Math & Zoom Traces Clock Accuracy Time Internal Accuracy Sample Rate & Delay Time Accuracy Jitter Noise Floor Trigger & Interpolator Jitter Channel-Channel Deskew Range External Clock Acquisition System Single-Shot Sample Rate/Ch 2 Channel Max Random Interleaved Sampling (RIS) Maximum Trigger Rate Intersegment Time Maximum Acquisition Points/Ch Standard	4 indep 8 math/zoom traces 30 MHz – 1 5 GS/s 10 GS/s 200 0	20 ps/div − 10 s/div endent zoom and 4 math/zoom traces st available with XMAP (Master Analysis pac ≤ 10 ppm @ 0-40 °C ≤ 0.06 / SR + (10 ppm * Reading) (rms) ± 10 ppm ≤ 10 s interval 2 ps rms @ 100 mV/div (typical) ≤ 2.5 ps (typical) ±4.5 ns GHz; 50 Ω impedance; applied at the aux 10 GS/s 20 GS/s GS/s for repetitive signals: 20 ps/div − 1 µs	tandard; ckage) or XMATH (Advanced Math pack ixiliary input 10 GS/s 20 GS/s	kage) 10 GS/s
Time/Division Range Math & Zoom Traces Clock Accuracy Time Internal Accuracy Sample Rate & Delay Time Accuracy Jitter Noise Floor Trigger & Interpolator Jitter Channel-Channel Deskew Range External Clock Acquisition System Single-Shot Sample Rate/Ch 2 Channel Max Random Interleaved Sampling (RIS) Maximum Trigger Rate Intersegment Time Maximum Acquisition Points/Ch Standard	4 indep 8 math/zoom traces 30 MHz – 1 5 GS/s 10 GS/s 200 0	20 ps/div − 10 s/div endent zoom and 4 math/zoom traces st available with XMAP (Master Analysis pac ≤ 10 ppm @ 0-40 °C ≤ 0.06 / SR + (10 ppm * Reading) (rms) ± 10 ppm ≤ 10 s interval 2 ps rms @ 100 mV/div (typical) ≤ 2.5 ps (typical) ±4.5 ns GHz; 50 Ω impedance; applied at the aux 10 GS/s 20 GS/s GS/s for repetitive signals: 20 ps/div − 1 µs	tandard; ckage) or XMATH (Advanced Math pack ixiliary input 10 GS/s 20 GS/s	kage) 10 GS/s
Math & Zoom Traces Clock Accuracy Time Internal Accuracy Sample Rate & Delay Time Accuracy Jitter Noise Floor Trigger & Interpolator Jitter Channel-Channel Deskew Range External Clock Acquisition System Single-Shot Sample Rate/Ch 2 Channel Max Random Interleaved Sampling (RIS) Maximum Trigger Rate Intersegment Time Maximum Acquisition Points/Ch Standard	8 math/zoom traces	endent zoom and 4 math/zoom traces st available with XMAP (Master Analysis pac ≤ 10 ppm @ 0-40 °C ≤ 0.06 / SR + (10 ppm * Reading) (rms) ± 10 ppm ≤ 10 s interval 2 ps rms @ 100 mV/div (typical) ≤ 2.5 ps (typical) ±4.5 ns GHz; 50 Ω impedance; applied at the aux 10 GS/s 20 GS/s GS/s for repetitive signals: 20 ps/div - 1 µs	ckage) or XMATH (Advanced Math pack ixiliary input 10 GS/s 20 GS/s	10 GS/s
Clock Accuracy Time Internal Accuracy Sample Rate & Delay Time Accuracy Jitter Noise Floor Trigger & Interpolator Jitter Channel-Channel Deskew Range External Clock Acquisition System Single-Shot Sample Rate/Ch 2 Channel Max Random Interleaved Sampling (RIS) Maximum Trigger Rate Intersegment Time Maximum Acquisition Points/Ch Standard	8 math/zoom traces	available with XMAP (Master Analysis pact ≤ 10 ppm @ 0-40 °C ≤ 0.06 / SR + (10 ppm * Reading) (rms) ± 10 ppm ≤ 10 s interval 2 ps rms @ 100 mV/div (typical) ≤ 2.5 ps (typical) ±4.5 ns GHz; 50 Ω impedance; applied at the aux 10 GS/s 20 GS/s GS/s for repetitive signals: 20 ps/div - 1 µs	ckage) or XMATH (Advanced Math pack ixiliary input 10 GS/s 20 GS/s	10 GS/s
Time Internal Accuracy Sample Rate & Delay Time Accuracy Jitter Noise Floor Trigger & Interpolator Jitter Channel-Channel Deskew Range External Clock Acquisition System Single-Shot Sample Rate/Ch 2 Channel Max Random Interleaved Sampling (RIS) Maximum Trigger Rate Intersegment Time Maximum Acquisition Points/Ch Standard	30 MHz – 1 5 G5/s 10 G5/s 200 0	≤ 10 ppm @ 0-40 ℃ ≤ 0.06 / SR + (10 ppm * Reading) (rms) ± 10 ppm ≤ 10 s interval 2 ps rms @ 100 mV/div (typical) ≤ 2.5 ps (typical) ±4.5 ns GHz; 50 Ω impedance; applied at the aux 10 GS/s 20 GS/s GS/s for repetitive signals: 20 ps/div - 1 µs	ixiliary input 10 GS/s 20 GS/s	10 GS/s
Time Internal Accuracy Sample Rate & Delay Time Accuracy Jitter Noise Floor Trigger & Interpolator Jitter Channel-Channel Deskew Range External Clock Acquisition System Single-Shot Sample Rate/Ch 2 Channel Max Random Interleaved Sampling (RIS) Maximum Trigger Rate Intersegment Time Maximum Acquisition Points/Ch Standard	5 GS/s 10 GS/s 200 (≤ 0.06 / SR + (10 ppm * Reading) (rms) ± 10 ppm ≤ 10 s interval 2 ps rms @ 100 mV/div (typical) ≤ 2.5 ps (typical) ±4.5 ns GHz; 50 Ω impedance; applied at the aux 10 GS/s 20 GS/s GS/s for repetitive signals: 20 ps/div – 1 μs	10 GS/s 20 GS/s	
Sample Rate & Delay Time Accuracy Jitter Noise Floor Trigger & Interpolator Jitter Channel-Channel Deskew Range External Clock Acquisition System Single-Shot Sample Rate/Ch 2 Channel Max Random Interleaved Sampling (RIS) Maximum Trigger Rate Intersegment Time Maximum Acquisition Points/Ch Standard	5 GS/s 10 GS/s 200 (± 10 ppm ≤ 10 s interval 2 ps rms @ 100 mV/div (typical) ≤ 2.5 ps (typical) ±4.5 ns GHz; 50 Ω impedance; applied at the aux 10 GS/s 20 GS/s GS/s for repetitive signals: 20 ps/div – 1 μs	10 GS/s 20 GS/s	
Jitter Noise Floor Trigger & Interpolator Jitter Channel-Channel Deskew Range External Clock Acquisition System Single-Shot Sample Rate/Ch 2 Channel Max Random Interleaved Sampling (RIS) Maximum Trigger Rate Intersegment Time Maximum Acquisition Points/Ch Standard	5 GS/s 10 GS/s 200 (2 ps rms @ 100 mV/div (typical) ≤ 2.5 ps (typical) ±4.5 ns GHz; 50 Ω impedance; applied at the aux 10 GS/s 20 GS/s GS/s for repetitive signals: 20 ps/div – 1 μs	10 GS/s 20 GS/s	
Trigger & Interpolator Jitter Channel-Channel Deskew Range External Clock Acquisition System Single-Shot Sample Rate/Ch 2 Channel Max Random Interleaved Sampling (RIS) Maximum Trigger Rate Intersegment Time Maximum Acquisition Points/Ch Standard	5 GS/s 10 GS/s 200 (≤ 2.5 ps (typical) ±4.5 ns GHz; 50 Ω impedance; applied at the au 10 GS/s 20 GS/s GS/s for repetitive signals: 20 ps/div – 1 μs	10 GS/s 20 GS/s	
Channel-Channel Deskew Range External Clock Acquisition System Single-Shot Sample Rate/Ch 2 Channel Max Random Interleaved Sampling (RIS) Maximum Trigger Rate Intersegment Time Maximum Acquisition Points/Ch Standard	5 GS/s 10 GS/s 200 (±4.5 ns GHz; 50 Ω impedance; applied at the au 10 GS/s 20 GS/s GS/s for repetitive signals: 20 ps/div – 1 μs	10 GS/s 20 GS/s	
External Clock Acquisition System Single-Shot Sample Rate/Ch 2 Channel Max Random Interleaved Sampling (RIS) Maximum Trigger Rate Intersegment Time Maximum Acquisition Points/Ch Standard	5 GS/s 10 GS/s 200 (GHz; 50 Ω impedance; applied at the au 10 GS/s 20 GS/s GS/s for repetitive signals: 20 ps/div – 1 μs	10 GS/s 20 GS/s	
Acquisition System Single-Shot Sample Rate/Ch 2 Channel Max Random Interleaved Sampling (RIS) Maximum Trigger Rate Intersegment Time Maximum Acquisition Points/Ch Standard	5 GS/s 10 GS/s 200 (10 GS/s 20 GS/s GS/s for repetitive signals: 20 ps/div – 1 µs	10 GS/s 20 GS/s	
2 Channel Max Random Interleaved Sampling (RIS) Maximum Trigger Rate Intersegment Time Maximum Acquisition Points/Ch Standard	10 GS/s 200 (20 GS/s GS/s for repetitive signals: 20 ps/div – 1 µs	20 GS/s	
Random Interleaved Sampling (RIS) Maximum Trigger Rate Intersegment Time Maximum Acquisition Points/Ch Standard	200 0	GS/s for repetitive signals: 20 ps/div – 1 µs		20 GS/s
Maximum Trigger Rate Intersegment Time Maximum Acquisition Points/Ch Standard			4.16	
Intersegment Time Maximum Acquisition Points/Ch Standard	150,000 wav		is/div	
Maximum Acquisition Points/Ch Standard		eforms/second (in Sequence Mode, up to	o 4 channels)	
Standard		≤ 6 µs		
	4 Ch / (2 Ch)	4 Ch / (2 Ch)		Sequence Mode
	500k / 1M	1M / 2M		500 segments
M – Memory Option	4M / 8M	4M / 8M		1,000 segments
L – Memory Option	_	8M / 16M		5,000 segments
VL – Memory Option	_	16M / 32M		10,000 segments
XL – Memory Option	-	24M / 48M		20,000 segments
Acquisition Processing				
Averaging	Summed averaging *	to 1 million sweeps; continuous averaging	a to 1 million sweeps	
Enhanced Resolution (ERES)	From 8.5 to 11 bits vertical resolution			
Envelope (Extrema)	En	velope, floor, roof for up to 1 million swee	eps	
Interpolation		Linear, Sin x/x	- 1	
Triggering System				
Modes	Anno teneros ales - 1.0	Normal, Auto, Single, and Stop	level unique to each accurate (autor 1)	a triagar)
Sources	Any input channel, E	xternal, Ext X10, Ext/10, or line; slope and l DC50 Ω, GND, DC1MΩ, AC1MΩ	iever unique to each source (except line	e uigger)
Coupling mode Pre-trigger delay		0–100% of horizontal time scale		
Pre-trigger delay Post-trigger delay		0–100% of norizontal time scale		
Hold-off by time or events		Up to 20 s or from 1 to 99,999,999 events	s	
Internal trigger range		+5 div from center	-	
Max trigger frequency	1 GHz w/Edge Trigger; 750 MHz w/SMART Trigger	1 GHz w/Edge Trigger; 750 MHz w/SMART Trigger	2 GHz w/Edge Trigger; 750 MHz w/SMART Trigger	3 GHz w/Edge Trigger; 750 MHz w/SMART Trigge
Basic Triggers				
Edge/Slope/Line	Triaga	ers when signal meets slope and level con	ndition	
	ingge	To which signal meets slope and level con	nation	
SMART Triggers®				
State or Edge Qualified	Delay b	t source only if a defined state or edge or between sources is selectable by time or	events.	
Dropout		ops out for longer than selected time betw		
Pattern	Each source can be h	, NAND, OR, NOR) of 5 inputs (4 channels ar high, low, or don't care. The high and low le tly. Triggers at start or end of the pattern.		
SMART Triggers				
with Exclusion Technology				
Glitch		litches with widths selectable from 600 p		
Signal or Pattern Width		ve pulse widths selectable from 600 ps to		
Signal or Pattern Interval	Trigger	rs on intervals selectable between 2 ns an	nd 20 s.	

Specifications

Automatic Setup	
Auto Setup	Automatically sets timebase, trigger, and sensitivity to display a wide range of repetitive signals.
Vertical Find Scale	Automatically sets the vertical sensitivity and offset for the selected channels to display a waveform with maximum dynamic range.
Probes	
Probes	(2) PP005A standard; Optional passive and active probes available.
Probe System: Probus	Automatically detects and supports a variety of compatible probes.
Scale Factors	Automatically or manually selected depending on probe used.
Color Waveform Display	
Туре	Color 10.4" flat-panel TFT-LCD with high resolution touch screen
Resolution	SVGA; 800 x 600 pixels
Real time Clock	Dates, hours, minutes, seconds displayed with waveform. SNTP support to synchronize to precision internet clocks.
Number of Traces Grid Styles	Display a maximum of 8 traces. Simultaneously display channel, zoom, memory, and math traces. Auto, Single, Dual, Quad, Octal, XY, Single + XY, Dual + XY
Waveform Styles	Sample dots joined or dots only
,	
Analog Persistence Display	Variable saturation levels stores and trace's participant data in momony
Analog & Color-Graded Persistence Persistence Selections	Variable saturation levels; stores each trace's persistence data in memory. Select analog, color, or three-dimensional.
Trace Selection	Activate persistence on all or any combination of traces.
Persistence Aging Time	Select from 500 ms to infinity.
Sweeps Displayed	All accumulated, or all accumulated with last trace highlighted
Zoom Expansion Traces	
	Display up to 4 Zoom and 4 Math/Zoom traces; 8 Math/Zoom traces available with XMAP (Master Analysis package) or XMATH (Advanced Math package).
CPU	
Processor	Intel 1.7 GHz or better with MS Windows 2000 Platform
Processing Memory	Up to 1 Gbyte
Internal Waveform Memory	
internal waveform memory	M1, M2, M3, M4 Internal Waveform Memory (store full-length waveforms with 16 bits/data point)
	or store to any number of files limited only by data storage media
Setup Storage	
Front Panel and Instrument Status	Store to the internal hard drive, floppy drive or to a USB-connected peripheral device.
Interface	
Remote Control	Via Windows Automation, or via LeCroy Remote Command Set
GPIB Port (Optional)	Supports IEEE – 488.2
Ethernet Port	10/100Base-TEthernet interface
Floppy Drive USB Ports	Internal, DOS-format, 3.5" high-density 4 USB ports support Windows compatible devices
External Monitor Port Standard	15-pin D-Type SVGA-compatible
Parallel Port	1 standard
Auxiliary Output	
Signal Types	Select from calibrator or control signals output on front panel
Calibrator Signal	5 Hz – 5 MHz square wave or DC level; 0.0 to 5.0 V into 50 Ω (0-1 V into 1 M Ω) or TTL volts (selectable)
Control Signals	Trigger enabled, trigger out, pass/fail status
Auxiliary Input	
Signal Types	Selected from External Trigger or External Clock input on front panel
General	
Auto Calibration	Ensures specified DC and timing accuracy is maintained for 1 year minimum
Power Requirements	100-120 VAC at 50/60/400 Hz 200-240 VAC at 50/60 Hz Automatic AC Voltage selection
	Power consumption: < 800 VA
Environmental	
Temperature (Operating)	+5 $^\circ$ C to +40 $^\circ$ C including floppy disk and CD-ROM drives
Temperature (Non-Operating)	-20 °C to +60 °C
Humidity (Operating)	5% to 80% relative humidity (non-condensing) up to +30 °C. Upper limit derates to 25% relative humidity (non-condensing) at +40 °C
Humidity (Non-Operating)	5% to 95% relative humidity (non-condensing) as tested per MIL-PRF-28800F up to 10,000 ft (3048 m) at or below +25 °C
Altitude (Operating) Altitude (Non-Operating)	up to 40,000 ft (3048 m) at or below +25 C up to 40,000 ft (12,192 m)
Random Vibration (Operating)	0.31 g rms 5 Hz to 500 Hz, 15 minutes in each of three orthogonal axes
Random Vibration (Non-Operating)	2.4 g rms 5 Hz to 500 Hz, 15 minutes in each of three orthogonal axes
Functional Shock	20 g peak, half sine, 11 ms pulse, 3 shocks (positive and negative) in each of three orthogonal axes, 18 shocks total
Physical Dimensions	
Dimensions (HWD)	264 mm x 397 mm x 491 mm; 10.4" x 15.6" x 19.3" (height excludes feet)
Weight	18 kg; 39 lbs.
Shipping Weight	24 kg; 53 lbs.
Certifications	
	CE Approved, UL and cUL listed; conforms to EN 61326-1, EN 61010-1, UL 3111-1, and CSA C22.2 No. 1010.1
Warranty and Service	
wanancy and service	3-year warranty; calibration recommended annually. Optional service programs include extended warranty, upgrades, and calibration services
	5-year warrancy, campration recommended annually. Optional service programs include extended warrancy, upgrades, and Calibration services

Ordering Information

WavePro 4-Channel Digital Oscilloscopes	Product Code
3 GHz 20 GS/s (2 Ch); 10 GS/s 4 Ch 1 M Ω & 50 Ω Color DSO	WavePro 7300
2 Mpts/2 Ch; 1 Mpts/Ch Standard	
$_2$ GHz 20 GS/s (2 Ch); 10 GS/s 4 Ch 1 M Ω & 50 Ω Color DSO	WavePro 7200
2 Mpts/2 Ch; 1 Mpts/Ch Standard	
GHz 20 GS/s (2 Ch); 10 GS/s 4 Ch 1 M Ω & 50 Ω Color DSO	WavePro 7100
2 Mpts 2 Ch; 1 Mpts/Ch Standard	
I GHz 10 GS/s (2 Ch); 5 GS/s 4 Ch 1 M Ω & 50 Ω Color DSO	WavePro 7000
Mpts 2 Ch; 500kpts/Ch Standard	
ncluded with Standard Configuration	
10:1 10 M Ω Passive Probes (Qty 2)	PP005A
Dperators Manual; Quick Reference Guide; CD-ROM with OM/RCM and Utility software and Recovery software	à
Remote Control Manual	
Floppy Disk Drive	
CD-ROM Drive	
Dptical 3 button Wheel Mouse- USB	
Standard Ports; 10/100Base-T Ethernet, Parallel, SVGA Video Output, USB	
Protective Front Cover	
Standard Commercial Calibration and Performance Certificate	
3 Year Warranty	
Memory Options	
3 Mpts/2 Ch, 4 Mpts/Ch	-M
16 Mpts/2 Ch, 8 Mpts/Ch	-1vi
32 Mpts/2 Ch, 16 Mpts/Ch	-L -VL
18 Mpts/2 Ch, 24 Mpts/Ch	-VL -XL
Note: The WavePro 7000 unit's maximum memory is "M" option	-AL
Hardware Options	
EEE-488 Remote Control Interface	GPIB-1
Removable Hard Drive Option	RHD
NaveShape Analysis Packages	
<-Stream Math, Processing and Developer's Kit (includes XMATH, XDEV, JTA2)	XMAP
Advanced Math Analysis Package	XMATH
Developer's Customization Kit	XDEV
itter and Timing Analysis	JTA2
Digital Filter Package	DFP2
Serial Data Mask Testing Package	SDM
Disk Drive Measurement Package	DDM2
eCroy M1 Timing Tool	M1/ADV-1
Selected Accessories	
0:1 10 M Ω Passive Probes	PP005A
3.5 GHz Active Voltage Probe	HFP3500
2.5 GHz Active Voltage Probe	HFP2500
I.5 GHz Active Voltage Probe	HFP1500
Vavel ink 4 GHz Differential Probe	D300/D300AT
Differential Probe	AP034
Differential Probe	ADP300 series
furrent Probe	CP and AP series
D/E Converters 500–1630 nm	OE 425/455
Keyboard Dscilloscope Cart	KYBD-1
	OC1021
	OC1024
Dscilloscope Cart with additional shelf and drawer	
	RMA-25 RMA-30

© 2003 by LeCroy Corporation. All rights reserved.

LeCroy, ActiveDSO, ProBus, SMART Trigger, WavePro, and Waverunner are registered trademarks of LeCroy Corporation. JitterTrack, WaveMaster, and X-Stream are trademarks of LeCroy Corporation. Information in this publication supersedes all earlier versions. Specifications subject to change without notice.

Sales and Service Throughout the World

Corporate Headquarters

700 Chestnut Ridge Road Chestnut Ridge, NY 10977 USA http://www.lecroy.com

LeCroy Sales Offices:

Asia: Hong Kong Phone (852) 2834 5630 Fax (852) 2834 9893

Austria: Markersdorf Phone (43) 2749 30050 Fax (43) 2749 30051

Benelux: The Netherlands Phone (31) 40 211 6998 Fax (31) 40 211 6999

France: Les Ulis Phone (33) 1 69 18 83 20 Fax (33) 1 69 07 40 42

Germany: Heidelberg Phone (49) 6221 827 00 Fax (49) 6221 834 655

Italy: Venice Phone (39) 041 456 97 00 Fax (39) 041 456 95 42

Japan: Osaka Phone (81) 6 6396 0961 Fax (81) 6 6396 0962

Japan: Tokyo Phone (81) 3 3376 9400 Fax (81) 3 3376 9587

Korea: Seoul Phone (82) 2 3452 0400 Fax (82) 2 3452 0490

Spain: Madrid Phone: (34) 91 640 11 34 Fax: (34) 91 640 06 40

Switzerland: Geneva Phone (41) 22 719 2228 Fax (41) 22 719 2230

U.K.: Abingdon Phone (44) 1 235 536 973 Fax (44) 1 235 528 796

U.S.A.: Chestnut Ridge Phone (1) 845 578 6020 Fax (1) 845 578 5985

